skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Leifi, DeTiare_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Drought and human land use have increased dust emissions in the western United States. However, the ecological sensitivity of remote lakes to dust deposition is not well understood and to date has largely been assessed through spatial and temporal correlations. Using in situ bioassays, we investigated the effects of dust enrichment on the production, chlorophylla(Chla) concentration, and taxonomic composition of phytoplankton and microbial communities in three western US mountain lakes. We found that dust‐derived nutrients increased Chlaconcentration in all three lakes, but the magnitude of the effect varied from 32% to 226%. This variation was related to pre‐existing lake conditions, such as trophic status, pH, and nutrient limitation. In Castle Lake, co‐limited by N and P, dust bioassays showed an increase in Chlacontent per cell but suppressed primary production and increased dark14C uptake. In contrast, both Flathead Lake and The Loch were primarily P‐limited and exhibited increases in Chlaconcentration. The contrasting Chlaand primary production results from Castle Lake are consistent with the alleviation of nitrogen limitation where energy Adenosine triphosphate (ATP) is used for nutrient assimilation instead of carbon fixation. Dust additions also altered the algal and microbial communities. The latter included the addition of new phyla (e.g.,Deinococcota), indicating that dust‐delivered microbes have the potential to thrive in receiving lakes. Our study provides the first short‐term experimental in situ evidence of rapid ecosystem effects in mountain lakes following dust exposure. The results emphasize the need for continued research in this area to understand interactions of both the short‐ and long‐term consequences of dust‐induced perturbations in remote lakes in the context of global changes. 
    more » « less